首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2905篇
  免费   602篇
  国内免费   564篇
测绘学   308篇
大气科学   290篇
地球物理   260篇
地质学   2349篇
海洋学   138篇
天文学   219篇
综合类   282篇
自然地理   225篇
  2024年   7篇
  2023年   39篇
  2022年   72篇
  2021年   85篇
  2020年   105篇
  2019年   115篇
  2018年   86篇
  2017年   99篇
  2016年   139篇
  2015年   138篇
  2014年   260篇
  2013年   197篇
  2012年   200篇
  2011年   285篇
  2010年   208篇
  2009年   215篇
  2008年   167篇
  2007年   181篇
  2006年   166篇
  2005年   169篇
  2004年   146篇
  2003年   135篇
  2002年   110篇
  2001年   120篇
  2000年   87篇
  1999年   98篇
  1998年   98篇
  1997年   74篇
  1996年   63篇
  1995年   57篇
  1994年   37篇
  1993年   31篇
  1992年   19篇
  1991年   16篇
  1990年   16篇
  1989年   5篇
  1988年   9篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1978年   1篇
  1977年   2篇
  1975年   1篇
  1954年   2篇
  1882年   1篇
  1875年   1篇
排序方式: 共有4071条查询结果,搜索用时 31 毫秒
41.
《China Geology》2021,4(1):77-94
The Chayu area is located at the southeastern margin of the Qinghai-Tibet Plateau. This region was considered to be in the southeastward extension of the Lhasa Block, bounded by Nujiang suture zone in the north and Yarlung Zangbo suture zone in the south. The Demala Group complex, a set of high-grade metamorphic gneisses widely distributed in the Chayu area, is known as the Precambrian metamorphic basement of the Lhasa Block in the area. According to field-based investigations and microstructure analysis, the Demala Group complex is considered to mainly consist of banded biotite plagiogneisses, biotite quartzofeldspathic gneiss, granitic gneiss, amphibolite, mica schist, and quartz schist, with many leucogranite veins. The zircon U-Pb ages of two granitic gneiss samples are 205 ± 1 Ma and 218 ± 1 Ma, respectively, representing the ages of their protoliths. The zircons from two biotite plagiogneisses samples show core-rim structures. The U-Pb ages of the cores are mainly 644 –446 Ma, 1213 –865 Ma, and 1780 –1400 Ma, reflecting the age characteristics of clastic zircons during sedimentation of the original rocks. The U-Pb ages of the rims are from 203 ± 2 Ma to 190 ± 1 Ma, which represent the age of metamorphism. The zircon U-Pb ages of one sample taken from the leucogranite veins that cut through granitic gneiss foliation range from 24 Ma to 22 Ma, interpreted as the age of the anatexis in the Demala Group complex. Biotite and muscovite separates were selected from the granitic gneiss, banded gneiss, and leucogranite veins for 40Ar/39Ar dating. The plateau ages of three muscovite samples are 16.56 ± 0.21 Ma, 16.90 ± 0.21 Ma, and 23.40 ± 0.31 Ma, and the plateau ages of four biotite samples are 16.70 ± 0.24 Ma, 16.14 ± 0.19 Ma, 15.88 ± 0.20 Ma, and 14.39 ± 0.20 Ma. The mica Ar-Ar ages can reveal the exhumation and cooling history of the Demala Group complex. Combined with the previous research results of the Demala Group complex, the authors refer that the Demala Group complex should be a set of metamorphic complex. The complex includes not only Precambrian basement metamorphic rock series, but also Paleozoic sedimentary rock and Mesozoic granitic rock. Based on the deformation characteristics, the authors concluded that two stages of the metamorphism and deformation can be revealed in the Demala Group complex since the Mesozoic, namely Late Triassic-Early Jurassic (203 –190 Ma) and Oligocene –Miocene (24 –14 Ma). The early stage of metamorphism (ranging from 203 –190 Ma) was related to the Late Triassic tectono-magmatism in the area. The anatexis and uplifting-exhumation of the later stage (24 –14 Ma) were related to the shearing of the Jiali strike-slip fault zone. The Miocene structures are response to the large-scale southeastward escape of crustal materials and block rotation in Southeast Tibet after India-Eurasia collision.©2021 China Geology Editorial Office.  相似文献   
42.
《China Geology》2021,4(4):673-685
The widely-developed, mixed clastic-carbonate succession in the northern Qaidam Basin records the paleo-environment changes under the glacial activity during the Late Paleozoic icehouse period in the context of regional tectonic stability, however, the depositional environment and sequence stratigraphy characteristics of the mixed deposits is rarely reported and still not clear. Combined the latest drilling wells data, we analyzed the sedimentary and stratigraphic characterization of the mixed strata via detailed field outcrops and core observations and thin section microscopic observations and recognized three depositional systems, including progradational coastal system, incised valley system, and carbonate-dominated marine shelf system, and identified four third-order sequences, SQ1, SQ2, SQ3 and SQ4, consisting of LST, TST, and HST. The depositional environment is overall belonged to marine-continental transition context and shifted from marine to continental environment frequently, showing an evolutionary pattern from marine towards terrestrial-marine transition and then back into the marine environment again in the long-term, which was controlled by the regional tectonic subsidence and the high-frequency and large-amplitude sea-level changes due to the Late Paleozoic glacial activity. The result is of significance in understanding the evolution of the Qinghai-Tibet Plateau and the sedimentation-climate response.©2021 China Geology Editorial Office.  相似文献   
43.
《China Geology》2021,4(2):329-352
In the context of global climate change, geosciences provide an important geological solution to achieve the goal of carbon neutrality, China’s geosciences and geological technologies can play an important role in solving the problem of carbon neutrality. This paper discusses the main problems, opportunities, and challenges that can be solved by the participation of geosciences in carbon neutrality, as well as China’s response to them. The main scientific problems involved and the geological work carried out mainly fall into three categories: (1) Carbon emission reduction technology (natural gas hydrate, geothermal, hot dry rock, nuclear energy, hydropower, wind energy, solar energy, hydrogen energy); (2) carbon sequestration technology (carbon capture and storage, underground space utilization); (3) key minerals needed to support carbon neutralization (raw materials for energy transformation, carbon reduction technology). Therefore, geosciences and geological technologies are needed: First, actively participate in the development of green energy such as natural gas, geothermal energy, hydropower, hot dry rock, and key energy minerals, and develop exploration and exploitation technologies such as geothermal energy and natural gas; the second is to do a good job in geological support for new energy site selection, carry out an in-depth study on geotechnical feasibility and mitigation measures, and form the basis of relevant economic decisions to reduce costs and prevent geological disasters; the third is to develop and coordinate relevant departments of geosciences, organize and carry out strategic research on natural resources, carry out theoretical system research on global climate change and other issues under the guidance of earth system science theory, and coordinate frontier scientific information and advanced technological tools of various disciplines. The goal of carbon neutrality provides new opportunities and challenges for geosciences research. In the future, it is necessary to provide theoretical and technical support from various aspects, enhance the ability of climate adaptation, and support the realization of the goal of carbon peaking and carbon neutrality.  相似文献   
44.
《China Geology》2021,4(4):541-552
The intersection of the Kyushu-Palau Ridge (KPR) and the Central Basin Rift (CBR) of the West Philippine Basin (WPB) is a relic of a trench-trench-rift (TTR) type triple-junction, which preserves some pivotal information on the cessation of the seafloor spreading of the WPB, the emplacement and disintegration of the proto-Izu-Bonin-Mariana (IBM) Arc, and the transition from initial rifting to steady-state spreading of the Parece Vela Basin (PVB). However, the structural characteristics of this triple-junction have not been thoroughly understood. In this paper, using the newly acquired multi-beam bathymetric, gravity, and magnetic data obtained by the Qingdao Institute of Marine Geology, China Geological Survey, the authors depict the topographic, gravity, and magnetic characteristics of the triple-junction and adjacent region. Calculations including the upward continuations and total horizontal derivatives of gravity anomaly are also performed to highlight the major structural features and discontinuities. Based on these works, the morphological and structural features and their formation mechanisms are analyzed. The results show that the last episode amagmatic extension along the CBR led to the formation of a deep rift valley, which extends eastward and incised the KPR. The morphological and structural fabrics of the KPR near and to the south of the triple-junction are consistent with those of the western PVB, manifesting as a series of NNE-SSW- and N-S-trending ridges and troughs, which were produced by the extensional faults associated with the initial rifting of the PVB. The superposition of the above two reasons induced the prominent discontinuity of the KPR in deep and shallow crustal structures between 15°N–15°30′N and 13°30′N–14°N. Combined with previous authors’ results, we propose that the stress produced by the early spreading of the PVB transmitted westward and promoted the final stage amagmatic extension of the CBR. The eastward propagation of the CBR destroyed the KPR, of which the magmatism had decayed or ceased at that time. The destruction mechanism of the KPR associated with the rifting of the PVB varies along strike the KPR. Adjacent to the triple-junction, the KPR was destroyed mainly due to the oblique intersection of the PVB rifting center. Whereas south of the triple-junction, the KPR was destroyed by the E-W-directional extensional faulting on its whole width.©2021 China Geology Editorial Office.  相似文献   
45.
文章研究关注了内蒙古冬季极端多雪气候事件的季节预测问题,在对大量降水观测资料、海温及大气环流场资料进行统计、分析、研究的基础上,确定了历史上58a(1960—2017年)内蒙古冬季极端多雪和少雪气候事件样本,通过对大气环流场的对比分析发现极端多雪或少雪冬季环流场特征显著不同,分析后确定了影响内蒙古冬季降雪的主要环流系统,包括西太平洋副热带高压、极涡、东亚大槽、环流E型及南方涛动等系统。同时,探索了对这些主要环流系统具有预测意义的来自海洋和大气场的预测信号,对预测信号关键区做了标准化定量提取,确定了预测信号综合指数分段判别阈值,给出了预测概念模型,取得了较好预测效果。  相似文献   
46.
作为我国地质调查领域最重要的数据源之一,地质调查报告中蕴含着丰富的地学知识及地质体描述等关键信息,准确高质量地抽取地质命名实体为地学知识图谱构建、知识推理及知识演化提供基础。笔者等在阐述地质命名实体识别任务基础上,分析地质实体不仅包含大量专业术语,还存在实体嵌套、大量长实体等领域特性,进一步增加了地质命名实体识别难度。笔者等提出一种基于轻量级预训练模型(ALBERT)—双向长短时记忆网络(BiLSTM)—条件随机场(CRF)模型的地质命名实体识别方法。首先利用ALBERT对输入字符上下文特征进行建模,并采用BiLSTM对其进行进一步上下文特征表征,最后采用CRF实现标注序列预测。实验结果表明,在构建的地质命名实体识别数据集上,相比于主流的命名实体识别模型算法,本文所提出的方法具有更好的抽取性能,提出的命名实体识别模型能为领域实体识别提供借鉴,同时为地学领域实体关系抽取和地学知识图谱构建提供有力方法支撑。  相似文献   
47.
48.
钪(Sc)是世界各国竞相争夺的关键金属矿产资源之一。滇中牟定大弯山变质玄武岩厚度>36.5m,出露面积0.5km^(2),形成时代为新元古代南华纪(781.3±1.9Ma)。本文对该变质玄武岩开展了全岩地球化学分析、全自动矿物分析(TESCAN TIMA)观测、NPPM薄片区域面扫和单矿物原位LA-ICPMS分析等研究,结果显示变质玄武岩全岩Sc含量为47.0×10^(-6)~97.9×10^(-6),平均含量为69.1×10^(-6),钪氧化物(Sc_(2)O_(3))平均含量为106×10^(-6),变质玄武岩空间Sc矿化特征稳定,具有形成钪矿资源的潜力。同时,变质玄武岩共伴生有钛和铁矿化,全岩TiO_(2)含量为2.57×10^(-2)~6.13×10^(-2),平均为4.25×10^(-2);TFe含量为13.3×10^(-2)~23.7×10^(-2),平均为17.7×10^(-2)。Sc可能存在类质同象和离子相两种赋存形式,类质同象形式Sc主要赋存于钛铁矿和金红石矿物中,钛铁矿中Sc含量为70.0×10^(-6)~168×10^(-6),平均值为108×10^(-6);金红石中Sc含量高达297×10^(-6);而磁铁矿、黑云母等矿物中Sc含量较低,均低于全岩Sc含量,对全岩Sc矿化贡献较小。牟定大弯山Sc矿化与以往报道侵入岩及其风化壳中Sc矿化在富集特征、赋存岩性和载体矿物等方面不同,是变质火山岩中新发现的Sc矿化信息,显示了较好的找矿潜力,对Sc资源勘查和研究具有重要指示意义。  相似文献   
49.
《China Geology》2023,6(1):70-84
Determining the main controlling factors of earthquake-triggered geohazards is a prerequisite for studying earthquake geohazards and post-disaster emergency response. By studying these factors, the geomorphic and geological factors controlling the nature, condition, and distribution of earthquake-induced geohazards can be analyzed. Such insights facilitate earthquake disaster prediction and emergency response planning. The authors combined field investigations and spatial data analysis to examine geohazards induced by seismic events, examining ten earthquakes including the Wenchuan, Yushu, Lushan events, to elucidate the main control factors of seismic geohazard. The authors observed that seismic geohazard occurrence is usually affected by many factors, among which active nature of the seismogenic fault, seismic peak ground acceleration (PGA), topographic slope and geomorphic height differences, and distance from the fault zone and river system are the most important. Compared with strike-slip earthquakes, thrust earthquakes induce more high-altitude and high-speed remote landslides, which can cause great harm. Slopes of 0°–40° are prone to secondary seismic geohazards, which are mainly concentrated 0–6 km from the river system. Secondary geohazards are not only related to seismogenic fault but also influenced by the associated faults in the earthquake area. The maximum seismic PGA and secondary seismic geohazard number are positively correlated, and the horizontal and vertical ground motions play leading and promoting roles in secondary geohazard formation, respectively. Through the research, the spatial distribution of seismic geohazards is predicted, providing a basis for the formulation of emergency response plans following disasters.©2023 China Geology Editorial Office.  相似文献   
50.
我国相继在多个盆地陆相页岩油勘探中获得突破,展示了良好的发展前景。基于现阶段勘探认识,本文认为陆相页岩油富集主要条件是:(1)稳定且有规模和适宜热成熟度的富有机质页岩是重要物质基础,以TOC含量>2%,最佳为3%~4%、母质类型Ⅰ和Ⅱ1型为主,Ro>0.9%或更高(咸化环境0.8%);(2)有一定容积规模的微纳米孔隙且具脆性的多类储层是重要条件,页岩储层有效孔隙度宜>3%~6%;成岩阶段偏低时,纯页岩段不是中高熟页岩油富集段,致密砂岩和混积岩黏土含量宜<20%;成岩阶段高时,页岩黏土含量可高至40%左右;(3)滞留烃数量大且品质好是重要保证,以S1>2 mg/g为门限,最佳>4~6 mg/g;气油比>80 m3/m3,最佳150~300 m3/m3;(4)顶底板具封闭性保持超压且滞留足够多轻-中组分烃类。陆相页岩油分布特征是:(1)有外物质注入的深-半深湖相是页岩油主要富集区;(2)具备“四高...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号